References
Abouelenien, M., Perez-Rosas, V., Mihalcea, R., & Burzo, M. (2014). Deception detection using a multimodal approach.
Proceedings of the 16th International Conference on Multimodal Interaction (pp. 58–65). Association for Computing Machinery.
https://doi.org/10.1145/2663204.2663229
Amanzio, M., Benedetti, F., Porro, C. A., Palermo, S., & Cauda, F. (2013). Activation likelihood estimation meta‐analysis of brain correlates of placebo analgesia in human experimental pain.
Human brain mapping, 738–752.
https://doi.org/10.1002%2Fhbm.21471
Ansari, S., & Gupta, S. (2021). Customer perception of the deceptiveness of online product reviews: A speech act theory perspective.
International Journal of Information Management, 57, Article 102286.
https://doi.org/10.1016/j.ijinfomgt.2020.102286
Bajaj, N., Rajwadi, M., Constance, T. G., Wall, J., Moniri, M., Laird, T., et al. (2023). Deception detection in conversations using the proximity of linguistic markers.
Knowledge-Based Systems, 267, Article 110422.
https://doi.org/10.1016/j.knosys.2023.110422
Bedwell, J. S., Gallagher, S., Whitten, S. N., & Fiore, S. M. (2011). Linguistic correlates of self in deceptive oral autobiographical narratives.
Consciousness and Cognition, 547–555.
https://doi.org/10.1016/j.concog.2010.10.001
Bond Jr, C. F., & DePaulo, B. M. (2006). Accuracy of deception judgments. Personality and Social Psychology Review, 10(3), 214–234.
https:// doi.org/10.1207/s15327957pspr1003_2
Chittarajan, G., & Hung, H. (2010). Are you a werewolf? detecting deceptie roles and outcomes in a conversational role-playing game. 2010 IEEE International Conference on Acoustics. Speech and Signal Processing (pp. 5334–5337). IEEE.
Ibraheem, S., Zhou, G., & DeNero, J. (2022). Putting the con in context: Identifying deceptive actors in the game of mafia.
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 158–168). Berkeley: Association for Computational Linguistics.
https://doi.org/10.18653/v1/2022.naacl-main.11
Kheirabadi, M. & Kheirabadi, R. (2024). The linguistic structure of fake news in advertising posts of social media.
Journal of Linguistic Studies: Theory and Practice,
3(1), 85–117 [In Persian]
https://doi.org/10.22034/jls.2024.141086.1100
Kim, J. M., Park, K. K.-c., Mariani, M., & Wamba, S. F. (2024). Investigating reviews intentions to post fake vs. authentic reviews based on behavioral linguistic features.
Technological Foecasting & Social Change, 198, 122971.
https://doi.org/10.1016/j.techfore.2023.122971
Malmir, A., Yaghoubi, R., Ameri, H., Dabir-Moghaddam, M. & Aghagolzadeh F. (2023). Nominalization as grammatical metaphor and ideological representation in political discourse of JCPOA.
Journal of Linguistic Studies: Theory and Practice, 1(2), 21–44 [In Persian]
https://doi.org/10.22034/jls.2023.62729
Niculae, V., Kumar, S., Boyd-Graber, J., & Danescu-Niculescu-Mizil, C. (2015). Linguistic harbingers of betrayal: A case study on an online strategy game.
ArXiv, abs/1506.04744.
https://doi.org/10.48550/arXiv.1506.04744
Spinde, T., Rudnitckaia, L., Mitrovic, J., Hamborg, F., Granitzer, M., Gipp, B., et al. (2021). Automated identification of bias inducing words in news articles using linguistic and context-oriented features.
Information Processing and Management, 58(3), 102505.
https://doi.org/10.1016/j.ipm.2021.102505
Zhou, L., & Sung, Y.-w. (2008). Cues to deception in online chinese groups.
Proceedings of the 41st Annual Hawaii International Conference on System Sciences (pp. 146). HICSS.
https://doi.org/10.1109/HICSS.2008.109